Cryomodule Recovery- Gradient Loss Avoidance and Recovery Scenarios

Mike Drury (Preble standing in)

LSD Re-Baseline Review **Jefferson Lab** November 16, 2012

Thomas Jefferson National Accelerator Facility Page 1 U.S. DEPARTMENT OF ENERGY

November 16, 2012

Contents

- Establish and maintain operating limits
- Failure Modes
- Recovery strategies

Establish and maintain operating limits

- New Performance Baseline from Recommission
 - Make sure we are getting all we can out of the cavities, avoid confusing cavity/cryomodule limitations with other system
- Maintain the best possible performance from the cavities/cryomodules
 - Closer communication / cooperation between Ops and SRF needed.
 - SRF role should not end when the DRVH's are handed over.
 - Better management of cavity gradients needed
 - Documentation of Performance History, need to help the operators know what is important to us
 - Investigation of perceived changes in performance, daily check on all cavities turned down
 - Burn-in periods follow commissioning
 - Vacuum clean-up
 - DRVH verification in the operational environment

Failure Modes

- Failure modes and recovery strategies have been reviewed, risk registry updated – procedures, equipment, supplies, and personnel are identified for use if needed
- Lower Qo's / High Heat Load due to Field Emission
 - Helium Processing 1-2 weeks per zone or pair of zones
- Low quench Gradients
 - No real options short of a full rework
- Hardware failures prevent operation of cavity. (Ex. Tuner)
 - Tuner –feedthru replacement (unlikely as all have been inspected during LSD)

Thomas Jefferson National Accelerator Facility

November 16, 2012

Failure Modes

- Vacuum Leaks
 - Helium into Insulating Vacuum (all)
 - Helium into Waveguide Vacuum (C20,C50 only)
 - Helium into Beamline Vacuum (C20,C50 only)
 - Cooldown related, will not know until the cooldown is complete
 - Air Leak into Insulating Vacuum (all)
 - Air Leak into Waveguide Vacuum (C20&C50 cold, C100 warm)
 - Air Leak into Beamline Vacuum (all)
 - Note: Air Leaks are highly unlikely, we have good leak checks on all systems during the LSD

Recovery strategies

- Small helium leaks
 - Additional pumping, similar to NL11-outgas helium and return to operations or insulating vacuum turbo pump
- Larger leaks Warm up the cryomodule
 - Repair in place 2-3 weeks from start of warm up back to 2K
 - Fix C100 helium to insulating vacuum leak
 - Reconfigure waveguides (C20&C50) to separate waveguides and recover one cavity
- Very large helium leaks
 - Remove cryomodule and rework, C50 program, 9 months 1 M\$
- Air leaks are extremely unlikely we know what to do but not presented here

Thomas Jefferson National Accelerator Facility

November 16, 2012

Options for Empty Slots

Cryomodule has been removed for repair. How do you make up the lost gradient?

- FEL cryomodules Fight with George
- Spare NPS quarter cryomodule ~10 MeV
- R100 swap operate ~ 70 MV in a normal linac zone
- Rearrange cryomodules in linacs to optimize gradient?
- 1-2 Month turnarounds for swaps depending on locations involved

